2 research outputs found

    Tangible language for hands-on play and learning

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2008.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (p. 187-192).For over a century, educators and constructivist theorists have argued that children learn by actively forming and testing -- constructing -- theories about how the world works. Recent efforts in the design of "tangible user interfaces" (TUIs) for learning have sought to bring together interaction models like direct manipulation and pedagogical frameworks like constructivism to make new, often complex, ideas salient for young children. Tangible interfaces attempt to eliminate the distance between the computational and physical world by making behavior directly manipulable with one's hands. In the past, systems for children to model behavior have been either intuitive-but-simple (e.g. curlybot) or complex-but-abstract, (e.g. LEGO Mindstorms). In order to develop a system that supports a user's transition from intuitive-but-simple constructions to constructions that are complex-but-abstract, I draw upon constructivist educational theories, particularly Bruner's theories of how learning progresses through enactive then iconic and then symbolic representations. This thesis present an example system and set of design guidelines to create a class of tools that helps people transition from simple-but-intuitive exploration to abstract-and-flexible exploration. The Topobo system is designed to facilitate mental transitions between different representations of ideas, and between different tools. A modular approach, with an inherent grammar, helps people make such transitions. With Topobo, children use enactive knowledge, e.g. knowing how to walk, as the intellectual basis to understand a scientific domain, e.g. engineering and robot locomotion. Queens, backpacks, Remix and Robo add various abstractions to the system, and extend the tangible interface. Children use Topobo to transition from hands-on knowledge to theories that can be tested and reformulated, employing a combination of enactive, iconic and symbolic representations of ideas.by Hayes Solos Raffle.Ph.D

    Topobo : a 3-D constructive assembly system with kinetic memory

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2004.Includes bibliographical references (p. 114-116).We introduce Topobo, a 3-D constructive assembly system em- bedded with kinetic memory, the ability to record and playback physical motion. Unique among modeling systems is Topobo's coincident physical input and output behaviors. By snapping together a combination of Passive (static) and Active (motorized) components, people can quickly assemble dynamic biomorphic forms like animals and skeletons, animate those forms by pushing, pulling, and twisting them, and observe the system repeatedly play back those motions. For example, a dog can be constructed and then taught to gesture and walk by twisting its body and legs. The dog will then repeat those movements and walk repeatedly. Our evaluation of Topobo in classrooms with children ages 5- 13 suggests that children develop affective relationships with Topobo creations and that their experimentation with Topobo allows them to learn about movement and animal locomotion through comparisons of their creations to their own bodies. Eighth grade science students' abilities to quickly develop various types of walking robots suggests that a tangible interface can support understanding how balance, leverage and gravity affect moving structures because the interface itself responds to the forces of nature that constrain such systems.by Hayes Solos Raffle.S.M
    corecore